Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765876

RESUMO

Complex systems involve monitoring, assessing, and predicting the health of various systems within an integrated vehicle health management (IVHM) system or a larger system. Health management applications rely on sensors that generate useful information about the health condition of the assets; thus, optimising the sensor network quality while considering specific constraints is the first step in assessing the condition of assets. The optimisation problem in sensor networks involves considering trade-offs between different performance metrics. This review paper provides a comprehensive guideline for practitioners in the field of sensor optimisation for complex systems. It introduces versatile multi-perspective cost functions for different aspects of sensor optimisation, including selection, placement, data processing and operation. A taxonomy and concept map of the field are defined as valuable navigation tools in this vast field. Optimisation techniques and quantification approaches of the cost functions are discussed, emphasising their adaptability to tailor to specific application requirements. As a pioneering contribution, all the relevant literature is gathered and classified here to further improve the understanding of optimal sensor networks from an information-gain perspective.

2.
ISA Trans ; 137: 670-691, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36658012

RESUMO

In this paper, the development and implementation of a novel approach for fault detection of an aircraft auxiliary power unit (APU) has been demonstrated. The developed approach aims to target the proactive identification of faults, in order to streamline the required maintenance and maximize the aircraft's operational availability. The existing techniques rely heavily on the installation of multiple types of intrusive sensors throughout the APU and therefore present a limited potential for deployment on an actual aircraft due to space constraints, accessibility issues as well as associated development and certification requirements. To overcome these challenges, an innovative approach based on non-intrusive sensors i.e., microphones in conjunction with appropriate feature extraction, classification, and regression techniques, has been successfully demonstrated for online fault detection of an APU. The overall approach has been implemented and validated based on the experimental test data acquired from Cranfield University's Boeing 737-400 aircraft, including the quantification of sensor location sensitivities on the efficacy of the acquired models. The findings of the overall analysis suggest that the acoustic-based models can accurately enable near real-time detection of faulty conditions i.e., Inlet Guide Vane malfunction, reduced mass flows through the Load Compressor and Bleed Valve malfunction, using only two microphones installed in the periphery of the APU. This study constitutes an enabling technology for robust, cost-effective, and efficient in-situ monitoring of an aircraft APU and potentially other associated thermal systems i.e., environmental control system, fuel system, and engines.

3.
Sensors (Basel) ; 23(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679802

RESUMO

Fault diagnosis of rotating machines is an important task to prevent machinery downtime, and provide verifiable support for condition-based maintenance (CBM) decision-making. Deep learning-enabled fault diagnosis operations have become increasingly popular because features are extracted and selected automatically. However, it is challenging for these models to give superior results with rotating machine components of different scales, single and multiple faults across different rotating components, diverse operating speeds, and diverse load conditions. To address these challenges, this paper proposes a comprehensive learning approach with optimized signal processing transforms for single as well as multiple faults diagnosis across dissimilar rotating machine components: gearbox, bearing, and shaft. The optimized bicoherence, spectral kurtosis and cyclic spectral coherence feature spaces, and deep blending ensemble learning are explored for multiple faults diagnosis of these components. The performance analysis of the proposed approach has been demonstrated through a single joint training of the entire framework on a compound dataset containing multiple faults derived from three public repositories. A comparison with the state-of-the-art approaches that used these datasets, shows that our method gives improved results with different components and faults with nominal retraining.


Assuntos
Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
4.
Sensors (Basel) ; 21(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203372

RESUMO

Bearings are critical components found in most rotating machinery; their health condition is of immense importance to many industries. The varied conditions and environments in which bearings operate make them prone to single and multiple faults. Widespread interest in the improvements of single fault diagnosis meant limited attention was spent on multiple fault diagnosis. However, multiple fault diagnosis poses extra challenges due to the submergence of the weak fault by the strong fault, presence of non-Gaussian noise, coupling of the frequency components, etc. A number of existing convolutional neural network models operate on a distinct feature that is not enough to assure reliable results in the presence of these challenges. In this paper, extended feature sets in three homogenous deep learning models are used for multiple fault diagnosis. This ensures a measure of diversity is introduced to the health management dataset to obtain complementary solutions from the models. The outputs of the models are fused through blending ensemble learning. Experiments using vibration datasets based on bearing multiple faults show an accuracy of 98.54%, with an improvement of 2.74% in the overall effectiveness over the single models. Compared with other technologies, the results show that this approach provides an improved generalized diagnostic capability.


Assuntos
Redes Neurais de Computação , Vibração
5.
ISA Trans ; 113: 127-139, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32423614

RESUMO

Predictive maintenance is increasingly advancing into the aerospace industry, and it comes with diverse prognostic health management solutions. This type of maintenance can unlock several benefits for aerospace organizations. Such as preventing unexpected equipment downtime and improving service quality. In developing data-driven predictive modelling, one of the challenges that cause model performance degradation is the data-imbalanced distribution. The extreme data imbalanced problem arises when the distribution of the classes present in the datasets is not uniform. Such that the total number of instances in a class far outnumber those of the other classes. Extremely skew data distribution can lead to irregular patterns and trends, which affects the learning of temporal features. This paper proposes a hybrid machine learning approach that blends natural language processing techniques and ensemble learning for predicting extremely rare aircraft component failure. The proposed approach is tested using a real aircraft central maintenance system log-based dataset. The dataset is characterized by extremely rare occurrences of known unscheduled component replacements. The results suggest that the proposed approach outperformed the existing imbalanced and ensemble learning methods in terms of precision, recall, and f1-score. The proposed approach is approximately 10% better than the synthetic minority oversampling technique. It was also found that by searching for patterns in the minority class exclusively, the class imbalance problem could be overcome. Hence, the model classification performance is improved.


Assuntos
Aviação , Aprendizado de Máquina , Algoritmos , Inteligência Artificial , Bases de Dados Factuais , Falha de Equipamento , Indústrias , Processamento de Linguagem Natural , Prognóstico
6.
Sensors (Basel) ; 20(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326272

RESUMO

The automobile industry no longer relies on pure mechanical systems; instead, it benefits from many smart features based on advanced embedded electronics. Although the rise in electronics and connectivity has improved comfort, functionality, and safe driving, it has also created new attack surfaces to penetrate the in-vehicle communication network, which was initially designed as a close loop system. For such applications, the Controller Area Network (CAN) is the most-widely used communication protocol, which still suffers from various security issues because of the lack of encryption and authentication. As a result, any malicious/hijacked node can cause catastrophic accidents and financial loss. This paper analyses the CAN bus comprehensively to provide an outlook on security concerns. It also presents the security vulnerabilities of the CAN and a state-of-the-art attack surface with cases of implemented attack scenarios and goes through different solutions that assist in attack prevention, mainly based on an intrusion detection system (IDS).

7.
Sensors (Basel) ; 18(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534052

RESUMO

The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE) was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...